
Lost in the Middle: How Language Models Use Long Contexts

Nelson F. Liu1∗ Kevin Lin2 John Hewitt1 Ashwin Paranjape3
Michele Bevilacqua3 Fabio Petroni3 Percy Liang1

1Stanford University 2University of California, Berkeley 3Samaya AI
nfliu@cs.stanford.edu

Abstract

While recent language models have the ability
to take long contexts as input, relatively little
is known about how well the language models
use longer context. We analyze language model
performance on two tasks that require identify-
ing relevant information within their input con-
texts: multi-document question answering and
key-value retrieval. We find that performance is
often highest when relevant information occurs
at the beginning or end of the input context,
and significantly degrades when models must
access relevant information in the middle of
long contexts. Furthermore, performance sub-
stantially decreases as the input context grows
longer, even for explicitly long-context models.
Our analysis provides a better understanding
of how language models use their input con-
text and provides new evaluation protocols for
future long-context models.

1 Introduction

Language models have become an important and
flexible building block in a variety of user-facing
language technologies, including conversational
interfaces, search and summarization, and collabo-
rative writing. These models perform downstream
tasks primarily via prompting: all relevant task
specification and data to process is formatted as
a textual context, and the model returns a gener-
ated text completion. These input contexts can
contain thousands of tokens, especially when using
language models on lengthy inputs (e.g., legal or
scientific documents, conversation histories, etc.)
or augmenting them with external information (e.g.,
relevant documents from a search engine, database
query results, etc; Petroni et al., 2020; Ram et al.,
2023; Shi et al., 2023; Mallen et al., 2023; Schick
et al., 2023, inter alia).

Handling these use-cases requires language mod-
els to successfully operate over long sequences.

*Work partially completed as an intern at Samaya AI.

1st 5th 10th 15th 20th
Position of Document with the Answer

55

60

65

70

75

Ac
cu

ra
cy

20 Total Retrieved Documents

gpt-3.5-turbo-0613 (open-book)
gpt-3.5-turbo-0613 (closed-book)

Figure 1: Changing the location of relevant information
(in this case, the position of the passage that answers an
input question) within the language model’s input con-
text results in a U-shaped performance curve—models
are better at using relevant information that occurs at the
very beginning or end of its input context, and perfor-
mance degrades significantly when models must access
and use information located in the middle of its input
context. For example, GPT-3.5-Turbo’s open-book per-
formance on the multi-document question task when
relevant information is placed in the middle of its input
context is lower than its performance when predicting
without any documents (i.e., the closed-book setting;
56.1%). See Figure 5 for full results.

Language models are generally implemented with
Transformers, which scale poorly to long sequences
(e.g., since self-attention complexity is quadratic
with the input sequence length). As a result, lan-
guage models are typically trained with relatively
small context windows. Recent improvements in
hardware (e.g., faster GPUs with more memory)
and algorithms (Dai et al., 2019; Dao et al., 2022;
Poli et al., 2023; Rubin and Berant, 2023, inter
alia) have resulted in language models with larger
context windows, but it remains unclear how these

ar
X

iv
:2

30
7.

03
17

2v
1

 [
cs

.C
L

]
 6

 J
ul

 2
02

3

mailto:nfliu@cs.stanford.edu

extended-context language models make use their
input contexts when performing downstream tasks.

We empirically investigate this question via
controlled experiments with a variety of state-of-
the-art open (MPT-30B-Instruct, LongChat-13B
(16K)) and closed (OpenAI’s GPT-3.5-Turbo and
Anthropic’s Claude) language models in settings
that require accessing and using information within
an input context. We first experiment with multi-
document question answering, which requires mod-
els to reason over provided documents to find rele-
vant information and use it to answer a given ques-
tion; this task mimics the retrieval-augmented gen-
eration setup underlying many commercial gener-
ative search and question answering applications
(e.g., Bing Chat). We make controlled changes to
the input context size and the position of the rele-
vant information within the input context and study
their effects on model performance. In particular,
we can increase the input context length by adding
more documents to the input context (akin to re-
trieving more documents in retrieval-augmented
generation), and modify the position of the relevant
information within the context by changing the or-
der of the documents in the input context to place
the relevant document at the beginning, middle or
end of the context.

We observe a distinctive U-shaped performance,
which can be clearly visualized in Figure 1, as
we vary the position of the relevant information
—language model performance is highest when rel-
evant information occurs at the very beginning or
end of its input context, and performance signifi-
cantly degrades when models must access and use
information in the middle of their input context
(§3.3). For example, when relevant information
is placed in the middle of its input context, GPT-
3.5-Turbo’s performance on the multi-document
question task is lower than its performance when
predicting without any documents (i.e., the closed-
book setting; 56.1%). In addition, we find that
model performance steadily degrades on longer
contexts (§3.3), and that extended-context models
are not necessarily better at using their input con-
text (§3.3).

Given that language models struggle to retrieve
and use relevant information in the multi-document
question answering task, to what extent can lan-
guage models even retrieve from their input con-
texts? We study this question with a synthetic key-
value retrieval task, which is designed to be a mini-

mal testbed for the basic ability to retrieve matching
tokens from the input context. In this task, models
are given a collection of JSON-formatted key-value
pairs, and must return the value associated with a
specific key. Similar to the multi-document QA
task, the key-value retrieval task also admits con-
trolled changes to the input context length (adding
more key-value pairs) and the position of relevant
information. We observe a similar U-shaped perfor-
mance curve in this setting; many models struggle
to simply retrieve matching tokens that occur in the
middle of their input context.

To better understand why language models strug-
gle to access and use information in the middle
of their input contexts, we conduct preliminary
investigations into the role of model architecture
(decoder-only vs. encoder-decoder), query-aware
contextualization, and instruction fine-tuning (§5).
We find that encoder-decoder models are relatively
robust to changes in the position of relevant in-
formation within their input context when evalu-
ated on sequences within its training-time sequence
length, but they show a U-shaped curve when eval-
uated on sequences longer than those seen during
training (§5.1). In addition, query-aware contex-
tualization (placing the query before and after the
documents or key-value pairs) enables models to
perform the synthetic key-value task perfectly, but
minimally changes trends in multi-document QA
(§5.2). Finally, even base language models (i.e.,
without instruction fine-tuning) show a U-shaped
performance curve as we vary the position of rele-
vant information in the input context.

Lastly, we perform a case study with retriever-
reader models on open-domain question answering
to better understand the trade-off between adding
more information to an input context and increas-
ing the amount of content that the model must rea-
son over (§6)—in contrast to our controlled multi-
document QA task, where the context always con-
tains exactly one document that answers the ques-
tion, none or many of the top k documents may
contain the answer in the open-domain QA sett-
ting. When retrieving from Wikipedia to answer
queries from NaturalQuestions-Open, we find that
model performance saturates long before retriever
recall levels off, indicating that models fail to effec-
tively use additional retrieved documents—using
more than 20 retrieved documents only marginally
improves performance (∼1.5% for GPT-3.5-Turbo
and ∼1% for claude-1.3).

Our analysis provides a better understanding of
how language models use their input context and
introduces new evaluation protocols for future long-
context models. To facilitate further work on un-
derstanding and improving how language models
use their input context, we release our code and
evaluation data at nelsonliu.me/papers/lost-in-the-
middle.

2 Language Models

We study language models as functions that take
a textual input context and return a textual out-
put. Modern language models are most commonly
implemented with Transformers (Vaswani et al.,
2017). Transformer language models encode in-
put contexts with self-attention, whose time and
memory complexity is quadratic in the length of
the input, limiting their application to very long
sequences. As a result, language models are gen-
erally pre-trained with relatively small amount of
prior context (its context window), which accord-
ingly also limits the maximum length of their input
contexts.

Increasing language model maximum context
length. Recent advances in hardware (e.g., faster
GPUs with more memory) and algorithms (e.g.,
FlashAttention; Dao et al., 2022) have driven a
rapid increase in language model maximum context
length. OpenAI’s GPT-4 model (released in March
2023) has a maximum context window of 32K to-
kens; in May 2023, Claude’s context window was
expanded from 8K tokens to 100K tokens. In June
2023, OpenAI announced an extended-context ver-
sion of its GPT-3.5-Turbo model, increasing its
context from 4K to 16K tokens. A variety of open-
source long context language models have also
been recently released: MPT-30B has a maximum
context length of 8K tokens, and LongChat-7B has
a maximum context length of 16K tokens. Finally,
a variety of recently-proposed architectures model
sequences with millions of tokens, raising the po-
tential of further dramatic increases in language
model maximum context length (Gu et al., 2022;
Fu et al., 2023; Poli et al., 2023; Yu et al., 2023,
inter alia).

3 Multi-Document Question Answering

Our goal is to better understand how language mod-
els use their input context. To this end, we analyze
model performance on multi-document question

answering, which requires models to find relevant
information within an input context and using it to
answer the question. In particular, we make con-
trolled changes to the length of the input context
and the position of the relevant information and
measure changes in task performance.

3.1 Experimental Setup

Our multi-document question answering task
closely parallels the retrieval-augmented genera-
tion setup underlying commercial search and ques-
tion answering applications (e.g., Bing Chat). In
these experiments, the model inputs are (i) a ques-
tion to answer and (ii) k documents (e.g., passages
from Wikipedia), where exactly one the documents
contains the answer to the question and k − 1 “dis-
tractor” documents do not. Performing this task
requires the model to access the document that con-
tains the answer within its input context and use
it to answer the question. Figure 2 presents an
example.

We instantiate this task with data from the
NaturalQuestions benchmark (Kwiatkowski et al.,
2019), which contains historical queries issued to
the Google search engine and human-annotated an-
swers extracted from Wikipedia. Specifically, we
first take queries from NaturalQuestions-Open (Lee
et al., 2019), an open domain question answering
benchmark that is derived from NaturalQuestions.
Use use passages (chunks of at most 100 tokens)
from Wikipedia as documents within our input con-
texts. For each of these queries, we need a docu-
ment that contains the answer and k − 1 distractor
documents that do not contain the answer. To ob-
tain a document that answers the question, we use
the Wikipedia paragraph that contains the answer
from the NaturalQuestions annotations. To col-
lect k − 1 distractor documents that do not contain
the answer, we use the Contriever retrieval system
(Izacard et al., 2021) to retrieve the k−1 Wikipedia
chunks that are most relevant to the question and do
not contain any of the NaturalQuestions-annotated
answers.1 In the input context, the distractor doc-
uments are presented in order of decreasing rele-
vance.2

1Ambiguity in NaturalQuestions-Open means that a small
number of distractor passages may contain a reasonable an-
swer. We additionally run experiments on subset of unam-
biguous questions, finding similar results and conclusions; see
Appendix A.

2Since there might be a prior over “search results” appear-
ing in ranked order, we explored randomly ordering the k − 1
distractor documents and mentioning that the documents are

https://nelsonliu.me/papers/lost-in-the-middle
https://nelsonliu.me/papers/lost-in-the-middle

Write a high-quality answer for the given question using only the provided search
results (some of which might be irrelevant).

Document [1](Title: Asian Americans in science and technology) Prize in physics for
discovery of the subatomic particle J/ψ. Subrahmanyan Chandrasekhar shared...
Document [2](Title: List of Nobel laureates in Physics) The first Nobel Prize in
Physics was awarded in 1901 to Wilhelm Conrad Röntgen, of Germany, who received...
Document [3](Title: Scientist) and pursued through a unique method, was essentially
in place. Ramón y Cajal won the Nobel Prize in 1906 for his remarkable...

Question: who got the first nobel prize in physics
Answer:

Input Context

Wilhelm Conrad Röntgen
Desired Answer

Figure 2: Example of the multi-document question answering task, with an input context and the desired model
answer. The relevant document for correctly answering the request is bolded within the input context.

Write a high-quality answer for the given question
using only the provided search results (some of
which might be irrelevant).

Document [1](Title: Asian Americans in science and
technology) ...
Document [2](Title: List of Nobel laureates in
Physics) ...
Document [3](Title: Scientist) ...
Document [4](Title: Norwegian Americans) ...
Document [5](Title: Maria Goeppert Mayer) ...

Question: who got the first nobel prize in physics
Answer:

Input ContextInput Context

Wilhelm Conrad Röntgen
Desired Answer

Figure 3: Modulating the input context length of the
multi-document question answering example presented
in Figure 2. Adding additional documents that do not
contain the answer increases the length of the input con-
text, but does not affect the desired output. The relevant
document pair for correctly answering the request is
bolded within the input context.

Following Kandpal et al. (2022) and Mallen et al.
(2023), we use accuracy as our primary evaluation
metric, judging whether any of the correct answers
(as taken from the NaturalQuestions annotations)
appear in the predicted output.

To modulate the input context length in this task,
we increase or decrease the number of retrieved
documents that do not contain the answer (Fig-
ure 3). To modulate the position of relevant infor-
mation within the input context, we adjust the order
of the documents in the input context to change the
position of the document that contains the answer
(Figure 4).

randomly ordered in the task description, but found the same
trends. See Appendix B for more details.

Write a high-quality answer for the given question
using only the provided search results (some of
which might be irrelevant).

Document [1](Title: List of Nobel laureates in
Physics) ...
Document [2](Title: Asian Americans in science and
technology) ...
Document [3](Title: Scientist) ...

Question: who got the first nobel prize in physics
Answer:

Input Context

Wilhelm Conrad Röntgen
Desired Answer

Figure 4: Modulating the position of relevant informa-
tion within the input context for the multi-document
question answering example presented in Figure 2. Re-
ordering the documents in the input context does not
affect the desired output. The relevant document for cor-
rectly answering the request is bolded within the input
context.

3.2 Models

We analyze several state-of-the-art open and closed
models. We use greedy decoding when generating
outputs and leave exploration of other decoding
methods to future work. We use a standard set of
prompts for each model (depicted in Figure 2).

Open models. We experiment with MPT-30B-
Instruct, which has a maximum context length of
8192 tokens. The model was initially pre-trained
on 1 trilion tokens using 2048-token sequences,
followed by an additional sequence length adapta-
tion pre-training phase on 50B tokens using 8192-
token sequences. We also evaluate LongChat-13B
(16K) (Li et al., 2023), which builds on LLaMA-
13B (original maximum context window from
2048; Touvron et al., 2023) and extends its con-
text window to 16384 by using condensed rotary

1st 5th 10th
Position of Document with the Answer

50

55

60

65

70

75

Ac
cu

ra
cy

10 Total Retrieved Documents

1st 5th 10th 15th 20th
Position of Document with the Answer

50

55

60

65

70

75

Ac
cu

ra
cy

20 Total Retrieved Documents

1st 5th 10th 15th 20th 25th 30th
Position of Document with the Answer

50

55

60

65

70

75

Ac
cu

ra
cy

30 Total Retrieved Documents

claude-1.3 claude-1.3-100k gpt-3.5-turbo-0613 gpt-3.5-turbo-16k-0613 mpt-30b-instruct longchat-13b-16k

Figure 5: The effect of changing the position of relevant information (document containing the answer) on multi-
document question answering performance. Lower positions are closer to the start of the input context. Performance
is generally highest when relevant information is positioned at the very start or very end of the context, and rapidly
degrades when models must reason over information in the middle of their input context.

embeddings before fine-tuning with 16384-token
sequences.

Closed models. We use the OpenAI API to ex-
periment with GPT-3.5-Turbo and GPT-3.5-Turbo
(16K).3 GPT-3.5-Turbo has a maximum context
length of 4K tokens, and GPT-3.5-Turbo (16K) is a
version with an extended maximum context length
of 16K tokens. We evaluate claude-1.3 and claude-
1.3-100k with the Anthropic API; claude-1.3 has a
maximum context length of 8K tokens, and claude-
1.3-100k has an extended context length of 100K
tokens.4

3.3 Results and Discussion
We experiment with input contexts containing 10,
20, and 30 documents (2.7K examples each). Fig-
ure 5 presents multi-document question answering
performance when the position of relevant informa-
tion within the input context. To better understand
the realistic lower- and upper-bounds on perfor-
mance, we also evaluate performance on the closed-
book and oracle settings. In the closed-book setting,
models are not given any documents in their input
context, and must rely on their parametric memory
to generate the correct answer. On the other hand,
in the oracle setting, language models are given
the single document that contains the answer and
must use it to answer the question. GPT-3.5-Turbo
and GPT-3.5-Turbo (16K) have the highest closed-

3We use the 0613 model revisions for all OpenAI API
experiments.

4We also use the OpenAI API to evaluate GPT-4 on a
subset of multi-document QA experiments, finding similar
results and trends as other models (though with higher absolute
performance). Evaluating GPT-4 on the full multi-document
QA and key-value retrieval experiments would cost upwards
of $6000. See Appendix C for results and discussion.

book (55%) and oracle (88%) performance; see
Appendix D for full closed-book and oracle results
on all models.

Model performance is highest when relevant in-
formation occurs at the beginning or end of its
input context. As the position of relevant infor-
mation is changed, we see a distinctive U-shaped
curve in model performance—models are much
better at identifying and using relevant informa-
tion that occurs at the very beginning and very
end of contexts, and suffer degraded performance
when forced to use information within the middle
of its input context. For example, GPT-3.5-Turbo’s
multi-document QA performance can drop by more
than 20%—at its nadir, performance in 20- and
30-document settings is lower than performance
without any input documents (i.e., closed-book per-
formance; 56.1%). These results indicate that cur-
rent models cannot effectively reason over their en-
tire context window when performing downstream
tasks, and that models have an easier time retriev-
ing and using information at the very start or end
of their input contexts.

Model performance substantially decreases as
input contexts grow longer. On both tasks,
model performance degrades as the contexts grow
longer, indicating that models struggle to retrieve
and use relevant information from long input con-
texts (Figure 6).

This trend continues when comparing models
with their corresponding extended-context versions.
For example, GPT-3.5-Turbo’s lowest performance
in the 20-document setting is 52.9% (when the doc-
ument containing the answer is positioned 10th
out of 20). The input contexts of the 30-document

5 10 20 30
Number of Documents in Input Context

55

60

65

70

Ac
cu

ra
cy

gpt-3.5-turbo-0613
gpt-3.5-turbo-16k-0613
claude-1.3

claude-1.3-100k
mpt-30b-instruct
longchat-13b-16k

Figure 6: Language model performance (averaged
across position of relevant information) on the multi-
document question answering task decreases as the input
context grows longer.

setting are too long for GPT-3.5-Turbo, but using
its extended-context counterpart GPT-3.5-Turbo
(16K) also results in performance decrease (49.5%
when the relevant document is positioned 10th out
of 30)—although extended-context models can pro-
cess longer input contexts, they may not be better
at reasoning over the information within its context
window.

Extended-context models are not necessarily bet-
ter at using input context. In settings where the
input context fits in the context window of both
a model and its extended-context counterpart, we
see that performance between them is nearly iden-
tical. For example, the results for GPT-3.5-Turbo
and GPT-3.5-Turbo (16K) are nearly superimposed
(solid green series and dashed red series, respec-
tively). These results indicate that models with
longer maximum context windows are not neces-
sarily better at using this extended context.

4 How Well Can Language Models
Retrieve From Input Contexts?

Given that language models struggle to retrieve
and use information from the middle of their input
contexts in the multi-document question answer-
ing task, to what extent can they simply retrieve
from input contexts? We study this question with
a synthetic key-value retrieval task to isolate and
study the basic ability of matching and retrieving
relevant information from input contexts.

4.1 Experimental Setup

In our synthetic key-value retrieval task, the inputs
are (i) a string-serialized JSON object with k key-
value pairs, where each of the keys and values are
unique, randomly-generated UUIDs and (ii) a par-
ticular key within the aforementioned JSON object.
The goal is to return the value associated with the
specified key. Thus, each JSON object contains
one relevant key-value pair (where the value is to
be retrieved), and k − 1 irrelevant “distractor” key-
value pairs. Figure 7 provides an example input
context and its corresponding desired output. We
use accuracy as our evaluation metric, assessing
whether the correct value appears in the predicted
output.

Our synthetic key-value retrieval task is designed
to provide a minimal testbed for the basic abil-
ity to retrieve matching tokens from an input con-
text. This task shares similar goals with the Little
Retrieval Test of Papailiopoulos et al. (2023) and
the closely-related fine-grained line retrieval task
of Li et al. (2023), but we explicitly seek to dis-
till and simplify the task by removing as much
natural language semantics as possible (using ran-
dom UUIDs instead), since language features may
present potential confounders (e.g., because Trans-
former language models may have varying sensi-
tivity to different linguistic features in their input
context; O’Connor and Andreas, 2021).

To modulate the input context length in this task,
we change the number of input JSON key-value
pairs k by adding or removing random keys, chang-
ing the number of distractor key-value pairs (Fig-
ure 8). To modulate the position of relevant in-
formation within the input context, we change the
position of the key to retrieve within the serialized
JSON object (Figure 9).

4.2 Results and Discussion

Figure 10 presents key-value retrieval performance;
We experiment with input contexts containing
75, 140, and 300 key-value pairs (500 examples
each). We use the same set of models as the multi-
document question answering experiments, see
§3.2 for more details.

Although the synthetic key-value retrieval task
only requires identifying exact match within
the input context, not all models achieve high
performance—claude-1.3 and claude-1.3-100k do
nearly perfectly on all evaluated input context
lengths, but other models struggle, especially when

Extract the value corresponding to the specified key in the JSON object below.

JSON data:
{"2a8d601d-1d69-4e64-9f90-8ad825a74195": "bb3ba2a5-7de8-434b-a86e-a88bb9fa7289",
 "a54e2eed-e625-4570-9f74-3624e77d6684": "d1ff29be-4e2a-4208-a182-0cea716be3d4",
 "9f4a92b9-5f69-4725-ba1e-403f08dea695": "703a7ce5-f17f-4e6d-b895-5836ba5ec71c",
 "52a9c80c-da51-4fc9-bf70-4a4901bc2ac3": "b2f8ea3d-4b1b-49e0-a141-b9823991ebeb",
 "f4eb1c53-af0a-4dc4-a3a5-c2d50851a178": "d733b0d2-6af3-44e1-8592-e5637fdb76fb"}

Key: "9f4a92b9-5f69-4725-ba1e-403f08dea695"
Corresponding value:

Input Context

703a7ce5-f17f-4e6d-b895-5836ba5ec71c
Desired Output

Figure 7: Example of the key-value retrieval task, with an input context and the desired model output. All keys
and values are 128-bit UUIDs, and the goal of the task is to return the value associated with the specified key. The
relevant key-value pair for correctly answering the request is bolded within the input context.

Extract the value corresponding to the specified key in
the JSON object below.

JSON data:
{"2a8d601d-...-8ad825a74195": "bb3ba2a5-...-a88bb9fa7289",
 "a54e2eed-...-3624e77d6684": "d1ff29be-...-0cea716be3d4",
 "f9130258-...-232e92d369c9": "6fcd02c0-...-16464ce76a13",
 "56e00398-...-4cbdd6c87b53": "bf4700be-...-7ccd57c9df91",
 "85352c2d-...-9edbe756efca": "307d52f4-...-cdd939438915",
 "9f4a92b9-...-403f08dea695": "703a7ce5-...-5836ba5ec71c",
 "7202d68f-...-e352844671fe": "145e4450-...-d8e4576d9a8e",
 "1dc736e1-...-f3296b586348": "43da98d6-...-1544f95782a2",
 "dd52c4b0-...-7a167fbdf8b4": "c88ad889-...-c0f76b4afa42",
 "52a9c80c-...-4a4901bc2ac3": "b2f8ea3d-...-b9823991ebeb",
 "f4eb1c53-...-c2d50851a178": "d733b0d2-...-e5637fdb76fb"}

Key: "9f4a92b9-5f69-4725-ba1e-403f08dea695"
Corresponding value:

Input Context

Figure 8: Modulating the input context length of the key-
value retrieval example presented in Figure 7. Adding
random key-value pairs (128-bit UUIDs) increases
length of the input context, but does not affect the de-
sired output. The relevant key-value pair for correctly
answering the request is bolded within the input context.

retrieving keys from 140 or more key-value pairs.

The results on the key-value retrieval task have
largely similar trends to the results on the multi-
document question-answering task (excepting mod-
els with perfect performance on the key-value re-
trieval task). In particular, we see the U-shaped
performance curve again; model performance is
lowest when they must access key-value pairs in
the middle of their input context. Furthermore,
model performance in this setting generally also
decreases on longer input contexts. LongChat-13B
(16K) in the 140 key-value setting is a notable out-
lier; when the relevant information is at the start
of the input context, it tends to generate code to
retrieve the key, rather than outputting the value
itself.

Extract the value corresponding to the specified key in
the JSON object below.

JSON data:
{"9f4a92b9-...-403f08dea695": "703a7ce5-...-5836ba5ec71c",
 "2a8d601d-...-8ad825a74195": "bb3ba2a5- ...-a88bb9fa7289",
 "a54e2eed-...-3624e77d6684": "d1ff29be- ...-0cea716be3d4",
 "52a9c80c-...-4a4901bc2ac3": "b2f8ea3d- ...-b9823991ebeb",
 "f4eb1c53-...-c2d50851a178": "d733b0d2- ...-e5637fdb76fb"}

Key: "9f4a92b9-5f69-4725-ba1e-403f08dea695"
Corresponding value:

Input Context

Figure 9: Modulating the position of relevant informa-
tion within the input context for the key-value retrieval
example presented in Figure 7. Re-ordering the key-
value pairs does not affect the desired output. All keys
and values are random 128-bit UUIDs. The relevant
key-value pair for correctly answering the request is
bolded within the input context.

5 Why Do Language Models Struggle To
Use Their Entire Input Context?

Our multi-document question answering and key-
value retrieval results show that language model
performance degrades significantly when they must
access relevant information in the middle of long in-
put contexts. To better understand why, we perform
some preliminary investigations into the role of
model architecture (e.g., decoder-only vs. encoder-
decoder), query-aware contextualization, and the
effects of instruction fine-tuning.

5.1 Effect of Model Architecture

The open models we evaluate in §3 and §4 are all
decoder-only models—at each timestep, they may
only attend to prior tokens. To better understand
the potential effects of model architecture on how
language model use context, we compare decoder-
only and encoder-decoder language models.

1st 25th 50th 75th
Position of Key to Retrieve

40

50

60

70

80

90

100
Ac

cu
ra

cy
75 Key-Value Pairs (~4K tokens)

1st 35th 70th 105th 140th
Position of Key to Retrieve

40

50

60

70

80

90

100

Ac
cu

ra
cy

140 Key-Value Pairs (~8K tokens)

1st 50th 100th 150th 200th 250th 300th
Position of Key to Retrieve

40

50

60

70

80

90

100

Ac
cu

ra
cy

300 Key-Value Pairs (~16K tokens)

claude-1.3 claude-1.3-100k gpt-3.5-turbo-0613 gpt-3.5-turbo-16k-0613 mpt-30b-instruct longchat-13b-16k

Figure 10: The effect of changing the input context length and the position of relevant information on key-value
retrieval performance. Lower positions are closer to the start of the input context. Although some models are largely
perfect on this synthetic task (e.g., claude-1.3 and claude-1.3), we see again that performance is often highest when
relevant information is occurs at the very start or very end of the context, and rapidly degrades when models must
retrieve from the middle of the input context. LongChat-13B (16K) in the 140 key-value setting is a notable outlier;
when the relevant information is at the start of the input context, it tends to generate code to retrieve the key, rather
than outputting the value itself.

1st 5th 10th
Position of Document with the Answer

50

55

60

65

70

Ac
cu

ra
cy

10 Total Retrieved Documents

1st 5th 10th 15th 20th
Position of Document with the Answer

50

55

60

65

70

Ac
cu

ra
cy

20 Total Retrieved Documents

1st 5th 10th 15th 20th 25th 30th
Position of Document with the Answer

50

55

60

65

70

Ac
cu

ra
cy

30 Total Retrieved Documents

mpt-30b-instruct longchat-13b-16k flan-t5-xxl flan-ul2

Figure 11: Encoder-decoder models (Flan-UL2 and Flan-T5-XXL) are relatively robust to changes in the position
of relevant information within their input context when evaluated on sequences that are shorter than their encoder’s
training-time maximum sequence length (2048 and 512 tokens, respectively). However, when these models are
evaluated on sequences longer than those seen during training (20- and 30-document settings), they also exhibit
a U-shaped performance curve, where performance is much higher when the relevant information occurs at the
beginning or end of the input context as opposed to the middle.

We experiment with Flan-T5-XXL (Raffel et al.,
2020; Chung et al., 2022) and Flan-UL2 (Tay et al.,
2023). Flan-T5-XXL is trained with a sequences
of 512 tokens (encoder and decoder). Flan-UL2
is initially trained with sequences of 512 tokens
(encoder and decoder), but is then pre-trained for
an extra 100K steps with 1024 tokens (encoder and
decoder), before instruction-tuning on sequences
with 2048 tokens in the encoder and 512 tokens
in the decoder. However, since these models use
relative positional embeddings, they can (in prin-
ciple) extrapolate beyond these maximum context
lengths; Shaham et al. (2023) find that both models
can perform well with sequences of 8K tokens.

Figure 11 juxtaposes the performance of
decoder-only and encoder-decoder models. When

Flan-UL2 is evaluated on sequences within its 2048
training-time context window, its performance is
relatively robust to changes in the position of rel-
evant information within the input context. When
evaluated on settings with sequences longer than
2048 tokens, Flan-UL2 performance begins to de-
grade when relevant information is place in the mid-
dle. Flan-T5-XXL shows a similar trend, where
longer input contexts result in a greater perfor-
mance degradation when placing relevant infor-
mation in the middle of the input context.

We speculate that encoder-decoder models may
make better use of their context windows because
their bidirectional encoder allows processing each
document in the context of future documents, po-
tentially enhancing relative importance estimation

1st 5th 10th 15th 20th
Position of Document with the Answer

50

60

70

80

Ac
cu

ra
cy

20 Total Retrieved Documents
(Query-Aware Contextualization)

claude-1.3
claude-1.3-100k
gpt-3.5-turbo-0613

gpt-3.5-turbo-16k-0613
mpt-30b-instruct
longchat-13b-16k

Figure 12: Query-aware contextualization (i.e., placing
the question before and after the documents in the in-
put context) improves multi-document QA performance
when relevant information occurs at the very beginning,
but slightly decreases performance otherwise.

between documents.

5.2 Effect of Query-Aware Contextualization

Our experiments in §3 and §4 place the query (i.e.,
question to answer or key to retrieve) after the data
to process (i.e., the documents or the key-value
pairs). As a result, decoder-only models cannot
attend to query tokens when contextualizing doc-
uments or key-value pairs, since the query only
appears at the end of the prompt and decoder-only
models can only attend to prior tokens at each
timestep. On the other hand, encoder-decoder mod-
els use a bidirectional encoder to contextualize in-
put contexts, and seem to be more robust to changes
in the position of relevant information in their in-
put context—can use this intuition to also improve
the performance of decoder-only models by plac-
ing the query before and after the data, enabling
query-aware contextualization of documents (or
key-value pairs)?

We find that query-aware contextualization dra-
matically improves performance on the key-value
retrieval task. For example, GPT-3.5-Turbo (16K)
(with query-aware contextualization) achieves per-
fect performance when evaluated with 300 key-
value pairs. In contrast, without query-aware con-
textualization, it achieves a lowest performance of
45.6% in the same setting (Figure 10).

In contrast, query-aware contextualization min-
imally affects performance trends in the multi-

1st 5th 10th 15th 20th
Position of Document with the Answer

44

46

48

50

52

54

56

Ac
cu

ra
cy

20 Total Retrieved Documents

mpt-30b mpt-30b-instruct

Figure 13: Multi-document QA performance of MPT-
30B-Instruct compared against its base model (i.e., be-
fore instruction fine-tuning) MPT-30B. Both models
have a U-shaped performance curve, where performance
is much higher when relevant information occurs at the
start or end of the input context, indicating that the
instruction tuning process itself is not necessarily re-
sponsible for these performance trends.

document question answering task. In particular,
it improves performance when the relevant infor-
mation is located at the very beginning of the input
context, but slightly decreases performance in other
settings.

5.3 Effect of Instruction-Tuning

All of the models that we evaluated in §3 and
§4 are instruction-tuned—after their initial pre-
training, they undergo supervised fine-tuning on
a dataset of instructions and responses. In this
supervised instruction-tuning data, the task specifi-
cation and/or instruction is commonly placed at the
beginning of the input context, which might lead
instruction-tuned language models to place more
weight on the start of the input context.

To better understand the potential effects of
instruction-tuning on how language models use
long input contexts, we compare the multi-
document question answering performance of
MPT-30B-Instruct against its base model (i.e., be-
fore instruction fine-tuning) MPT-30B. We use the
same experimental setup as §3.

Figure 13 compares the multi-document QA
performance of MPT-30B and MPT-30B-Instruct
as a function of the position of the relevant in-
formation in the input context. Surprisingly, we

see that both MPT-30B and MPT-30B-Instruct ex-
hibit a U-shaped performance curve, where perfor-
mance is highest when relevant information occurs
at the very beginning or very end of the context.
Although the absolute performance of MPT-30B-
Instruct is uniformly higher than that of MPT-30B,
their overall performance trends are quite similar.

These observations complement prior work,
which found that language models are biased to-
wards recent tokens (i.e., the end of the input con-
text; Khandelwal et al., 2018; Press et al., 2021).
This recency bias is generally shown in the con-
text of next-word prediction on contiguous text,
where language models minimally benefit from
long-range information (Sun et al., 2021). In con-
trast, our results show that language models are
capable of using longer-range information (i.e., the
beginning of the input context) when prompted
with instruction-formatted data. We hypothesize
that language models learn to use these contexts
from similarly-formatted data that may occur in
webtext seen during pre-training, e.g., StackOver-
flow questions and answers.

6 Is More Context Is Always Better?
A Case Study With Open-Domain QA

In practical settings, there is often a trade-off with
increased the input context length—providing the
instruction-tuned language model with more infor-
mation may help improve downstream task perfor-
mance, but also increases the amount of content
that the model must reason over. Even if a language
model can take in 16K tokens, is it actually benefi-
cial to provide 16K tokens of context? The answer
to this question is downstream task-specific since it
depends on the marginal value of the added context
and the model’s ability to effectively use long input
contexts, but we perform a case study with open-
domain question answering on NaturalQuestions-
Open to better understand this trade-off.

We use models in a standard retriever-reader
setup. A retrieval system (Contriever, fine-tuned
on MS-MARCO) takes an input query from
NaturalQuestions-Open and returns k documents
from Wikipedia. To condition instruction-tuned
language models on these retrieved documents, we
simply include them in the prompt. We evaluate
retriever recall and reader accuracy (whether any
of the annotated answers appear in the predicted
output) as a function of the number of retrieved
documents k. We use a subset of NaturalQuestions-

5 10 20 30 40 50
Number of Retrieved Docs

50

60

70

80

90

M
et

ric

claude-1.3
claude-1.3-100k
gpt-3.5-turbo-0613
gpt-3.5-turbo-16k-0613

mpt-30b-instruct
longchat-13b-16k
contriever recall

Figure 14: Retriever recall and model performance as a
function of the number of retrieved documents. Model
performance saturates long before retriever recall satu-
rates, indicating that the models have difficulty making
use of the extra retrieved documents.

Open where the long answer is a paragraph (as
opposed to a table or a list).

Figure 14 presents open-domain QA results. We
see that reader model performance saturates long
before retriever performance levels off, indicating
that readers are not effectively using the extra con-
text. Using more than 20 retrieved documents only
marginally improves reader performance (∼1.5%
for GPT-3.5-Turbo and ∼1% for Claude), while sig-
nificantly increasing the input context length (and
thus latency and cost). These results, coupled with
the observation that models are better at retriev-
ing and using information at the start or end of the
input contexts, suggest that effective reranking of
retrieved documents (pushing relevant information
closer to the start of the input context) or ranked list
truncation (returning fewer documents when neces-
sary; Arampatzis et al., 2009) may be promising di-
rections for improving how language-model-based
readers use retrieved context.

7 Related Work

7.1 Long-context language models
There is a rich line of work in designing performant
language models with cheaper scaling than Trans-
formers in the context length. Many lines of work
pursue Transformer variants with attention modi-
fications like recurrence (Dai et al., 2019), factor-
izing attention into computationally less intensive
approximations (Beltagy et al., 2020; Zaheer et al.,

2020), or low-rank approximations (Wang et al.,
2020; Peng et al., 2021); see Tay et al. (2022) for
a comprehensive overview. Dao et al. (2022) in-
stead provide a faster exact attention by a carefully-
crafted IO-aware CUDA kernel. Separately, there
are attempts to do away with attention entire to
remove quadratic sequence length complexity, of-
ten through convolution and/or linear RNNs, e.g.,
in RWKV (Peng, 2023), S4 (Gu et al., 2022), or
Hyena (Poli et al., 2023). Many efforts evaluate per-
plexity on a diverse web corpus as a proxy for the
ability to process long contexts; this work shows
that precise knowledge access on long contexts
may be an added challenge.

7.2 How do language models use context?
The pioneering work of Khandelwal et al. (2018)
showed that small LSTM language models make
increasingly coarse use of longer-term context;
Sankar et al. (2019) found similar results in dia-
logue models. Petroni et al. (2020) were among the
first to demonstrate the potential of combining con-
text from an information retrieval system with a pre-
trained language models for unsupervised question
answering. O’Connor and Andreas (2021) found
that many information-destroying operations had
marginal effects on Transformer LMs’ predictions.
Krishna et al. (2022) found that long-context neu-
ral generation in modestly-sized Transformer lan-
guage models degenerates because models fail to
properly condition on long context. Finally, study-
ing long-context models, Sun et al. (2021) found
that longer contexts improves prediction of only
a few tokens, an empirical finding consistent with
the theory of Sharan et al. (2018), who showed
that sequence distributions with bounded mutual
information necessarily lead to marginal average
prediction benefits from increasingly long context.

7.3 The serial-position effect
The U-shaped curve we observe in this work has
a connection in psychology known as the serial-
position effect (Ebbinghaus, 1913; Murdock Jr,
1962), that states that in free-association recall
of elements from a list, humans tend to best re-
member the first and last elements of the list. The
serial-position effect plays a role in understanding
how humans develop short- and long-term memory.
Observing a serial-position-like effect in LLMs is
perhaps surprising, since the self-attention mecha-
nisms underlying Transformer LLMs being techni-
cally equally capable of retrieving any token from

their contexts.

8 Conclusion

We empirically study how language models use
long input contexts via a series of controlled ex-
periments on two tasks that require identifying
and using relevant information in-context: multi-
document question answering and key-value re-
trieval. We find that language models often strug-
gle to use information in the middle of long input
contexts, and that performance decreases as the
input context grows longer. We conduct a pre-
liminary investigation of the role of (i) model ar-
chitecture, (ii) query-aware contextualization, and
(iii) instruction-tuning to better understand how
each of these factors might affect how language
models use context. Finally, we conclude with a
practical case study of open-domain question an-
swering, finding that the performance of language
model readers saturates far before retriever recall.
Our results and analysis provide a better under-
standing of how language models use their input
context and provides new evaluation protocols for
future long-context models.

Acknowledgments

We thank Sewon Min for her help with AmbigQA.
In addition, we thank Eric Wallace and Sang
Michael Xie for feedback and discussions that
helped improve this work. This work was sup-
ported by the Stanford Center for Research on
Foundation Models (CRFM), by OpenAI via an
API credits grant to the CRFM, and by Anthropic
via the Claude academic access program.

References
Avi Arampatzis, Jaap Kamps, and Stephen Robertson.

2009. Where to stop reading a ranked list? threshold
optimization using truncated score distributions. In
Proc. of SIGIR.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
ArXiv:2004.05150.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,

Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. ArXiv:2210.11416.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proc. of ACL.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
ArXiv:2205.14135.

Hermann Ebbinghaus. 1913. Memory: A contribution
to experimental psychology. H. A. Ruger & C. E.
Bussenius, Trans.

Daniel Y. Fu, Tri Dao, Khaled Kamal Saab, Armin W.
Thomas, Atri Rudra, and Christopher Ré. 2023. Hun-
gry hungry hippos: Towards language modeling with
state space models. In Proc. of ICLR.

Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi-
ciently modeling long sequences with structured state
spaces. In Proc. of ICLR.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense
information retrieval with contrastive learning.
ArXiv:2112.09118.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proc. of EACL.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2022. Large lan-
guage models struggle to learn long-tail knowledge.
ArXiv:2211.08411.

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky.
2018. Sharp nearby, fuzzy far away: How neural
language models use context. In Proc. of ACL.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mo-
hit Iyyer. 2022. RankGen: Improving text generation
with large ranking models. In Proc. of EMNLP.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral Questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proc. of ACL.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph E. Gonzalez, Ion Stoica, Xuezhe
Ma, , and Hao Zhang. 2023. How long can open-
source LLMs truly promise on context length?

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proc. of ACL.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. AmbigQA: Answering am-
biguous open-domain questions. In Proc. of EMNLP.

Bennet B. Murdock Jr. 1962. The serial position effect
of free recall. Journal of experimental psychology,
64(5):482.

Joe O’Connor and Jacob Andreas. 2021. What context
features can transformer language models use? In
Proc. of ACL.

Dimitris Papailiopoulos, Kangwook Lee, and Jy-
yong Sohn. 2023. A little retrieval test for large
language models. https://github.com/anadim/
the-little-retrieval-test.

Bo Peng. 2023. RWKV-LM. https://github.com/
BlinkDL/RWKV-LM.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong. 2021.
Random feature attention. In Proc. of ICLR.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktäschel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. In Proc. of AKBC.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hierar-
chy: Towards larger convolutional language models.
In Proc. of ICML.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using shorter
inputs. In Proc. of ACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. ArXiv:2302.00083.

Ohad Rubin and Jonathan Berant. 2023. Long-
range language modeling with self-retrieval.
ArXiv:2306.13421.

https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://github.com/anadim/the-little-retrieval-test
https://github.com/anadim/the-little-retrieval-test
https://github.com/BlinkDL/RWKV-LM
https://github.com/BlinkDL/RWKV-LM

Chinnadhurai Sankar, Sandeep Subramanian, Chris Pal,
Sarath Chandar, and Yoshua Bengio. 2019. Do neu-
ral dialog systems use the conversation history effec-
tively? an empirical study. In Proc. of ACL.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Be-
rant, and Omer Levy. 2023. ZeroSCROLLS: A
zero-shot benchmark for long text understanding.
ArXiv:2305.14196.

Vatsal Sharan, Sham Kakade, Percy Liang, and Gregory
Valiant. 2018. Prediction with a short memory. In
Proc. of STOC.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen tau Yih. 2023. REPLUG: Retrieval-augmented
black-box language models. ArXiv:2301.12652.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context? In
Proc. of EMNLP.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2022. Efficient transformers: A survey. ACM
Computing Surveys, 55(6).

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier
Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal Schuster,
Huaixiu Steven Zheng, Denny Zhou, Neil Houlsby,
and Donald Metzler. 2023. UL2: Unifying language
learning paradigms. ArXiv:2205.05131.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA:
Open and efficient foundation language models.
ArXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. ArXiv, abs/2006.04768.

Lili Yu, Dániel Simig, Colin Flaherty, Armen Agha-
janyan, Luke Zettlemoyer, and Mike Lewis. 2023.
MEGABYTE: Predicting million-byte sequences
with multiscale transformers. ArXiv:2305.07185.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,

Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Proc. of NeurIPS,
volume 33.

A Ambiguity in Multi-Document QA
Distractor Documents

Following a variety of past work on
NaturalQuestions-Open (Izacard et al., 2021;
Izacard and Grave, 2021, inter alia), we use a
standard Wikipedia dump from late 2018 as our
retrieval corpus. However, this standard Wikipedia
dump has a small amount of temporal mismatch
with the data in NaturalQuestions.

For example, consider the question “what nfl
team does robert griffin iii play for”. The Natu-
ralQuestions annotated answer is “currently a free
agent”. However, the Wikipedia retrieval corpus
contains the information that he plays for the “Balti-
more Ravens”, since he was released from the team
between the Wikipedia dump’s timestamp and the
NaturalQuestions annotation process.

We use the ambiguity annotations of Min et al.
(2020) to create a subset unambiguous questions.
Experiments on this unambiguous subset of the
data show similar results and conclusions as the
experiments on the full questions collection (Fig-
ure 15).

1st 5th 10th 15th 20th
Position of Document with the Answer

60

65

70

75

Ac
cu

ra
cy

20 Total Retrieved Documents (Unambiguous Questions)

claude-1.3
claude-1.3-100k
gpt-3.5-turbo-0613

gpt-3.5-turbo-16k-0613
mpt-30b-instruct
longchat-13b-16k

Figure 15: Language model performance on a unam-
biguous subset of questions.

B Randomizing Distractor Order in
Multi-Document QA

Our prompt instructs the language model to use
the provided search results to answer the ques-
tion. There may be a prior in the pre-training or
instruction-tuning data to treat search results as
sorted by decreasing relevance (i.e., the documents
near the beginning of the input context are more
likely to be useful than those at the end). To vali-

date that our conclusions are not simply a byprod-
uct of this bias, we run experiments the modified
instruction “Write a high-quality answer for the
given question using only the provided search re-
sults (some of which might be irrelevant). The
search results are ordered randomly.” In addition,
we randomly shuffle the k−1 distractor documents.

Figure 16 presents the results of this experiment.
We continue to see a U-shaped performance curve,
with performance degrading when language mod-
els must use information in the middle of their
input contexts. Comparing the results in §3.3 with
those when randomizing the distractor order and
mentioning such in the prompt, we see that ran-
domization slightly decrases performance when
the relevant information is at the very beginning
of the context, and slightly increases performance
when using information in the middle and end of
the context.

1st 5th 10th 15th 20th
Position of Document with the Answer

55

60

65

70

75

Ac
cu

ra
cy

20 Total Retrieved Documents (Randomly Ordered)

claude-1.3
claude-1.3-100k
gpt-3.5-turbo-0613

gpt-3.5-turbo-16k-0613
mpt-30b-instruct
longchat-13b-16k

Figure 16: Language model performance when random-
izing the order of the distractors (rather than presenting
them in order of decreasing relevance) and mentioning
as such in the prompt.

C GPT-4 Performance

We evaluate GPT-4 on a subset of 500 random
examples (Figure 17). GPT-4 achieves higher abso-
lute performance than any other language model,
but still shows a U-shaped performance curve—its
performance is highest when relevant information
occurs at the very start or end of the context, and
performance degrades when it must use informa-
tion in the middle of its input context.

1st 5th 10th 15th 20th
Position of Document with the Answer

50

60

70

80

90

Ac
cu

ra
cy

20 Total Retrieved Documents (500 Question Sample)

claude-1.3
claude-1.3-100k
gpt-3.5-turbo-0613
gpt-3.5-turbo-16k-0613

mpt-30b-instruct
longchat-13b-16k
gpt-4-0613

Figure 17: Although GPT-4 has higher absolute perfor-
mance than other models, its performance still degrades
when relevant information occurs in the middle of the
input context.

D Closed-book and Oracle Performance

Table 1 presents language model performance
on the closed-book and oracle settings for multi-
document question answering. In the closed-book
setting, language models are not given any docu-
ments in their input context, and must rely on their
parametric memory to generate the correct answer.
In the oracle setting, language models are given the
single document that contains the answer, and must
use it to answer the question. This represents an
upper-bound on task performance.

Model Closed-Book Oracle

LongChat-13B (16K) 35.0% 83.35%
MPT-30B-Instruct 31.5% 81.9%
GPT-3.5-Turbo 56.1% 88.3
GPT-3.5-Turbo (16K) 56.0% 88.6
Claude 48.3% 76.1%
Claude (100K) 48.2% 76.4%

Table 1: Closed-book and oracle accuracy of language
models on the multi-document question answering task.

