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  Text-based EditingText-based Animation

   Text-to-3D Avatar Generation

Figure 1. With only text descriptions as input, TADA generates high-fidelity 3D avatars with lifelike texture and detailed geometry,
including high-resolution faces. Accurate alignment of texture and geometry, together with an underlying SMPL-X representation, enables
expressive animation. TADA also supports applications such as virtual try-on and personalized editing using text.

Abstract

We introduce TADA, a simple-yet-effective approach
that takes textual descriptions and produces expressive
3D avatars with high-quality geometry and lifelike
textures, that can be animated and rendered with
traditional graphics pipelines. Existing text-based
character generation methods are limited in terms of
geometry and texture quality, and cannot be realistically
animated due to the misalignment between the geometry
and the texture, particularly at face region. To address
these limitations, TADA leverages the synergy of a 2D
diffusion model and a parametric body model. Specifically,
we derive a high-resolution upsampled SMPL-X with
displacement layer and a texture map, and use hierarchical

*denotes equal contribution.

rendering with score distillation sampling (SDS) to create
high-quality, detailed, holistic 3D avatars from text.
To ensure alignment between the geometry and texture,
we render normals and RGB images of the generated
character and exploit their latent embeddings during
SDS optimization process. We further drive the face of
character with multiple expressions during optimization,
ensuring that its semantics remain consistent with the
original SMPL-X model, for realistic animation with
semantic alignment. Both qualitative and quantitative
evaluations show that TADA significantly surpasses existing
approaches. TADA enables large-scale creation of digital
characters ready for animation and rendering, while also
allows for text-guided editing. The code will be public for
research purposes at tada.is.tue.mpg.de.
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1. Introduction
Digital avatars are a foundation for applications in
augmented and virtual reality, immersive telepresence [27,
28, 49, 68, 78], virtual try-on [51, 52, 79], and
video games [15, 77, 80]. Creating high-quality and
expressive 3D avatars is challenging since the geometry
and appearance of the character has to be modelled under a
variety of different poses. Traditional pipelines used in the
entertainment industry often use sophisticated multi-view
capture studios [3, 22, 32] to create complex 3D models.
Manual processes like cleaning and rigging the scans
make creating an animatable character time-consuming
and expensive. While there is recent progress on
automatic learning-based body reconstruction from single
image [20, 28, 29, 48, 49, 67, 68, 70], or sparse
images [54], such methods are limited to real humans,
fail on fictional characters, and are hard to edit and
control. Thanks to the rapid progress on Large Language
Models [4, 42] and Diffusion Models [17, 57–59, 66],
recent work has shown that text-to-image models [43,
45] can be combined with differentiable neural 3D scene
representations such as DeepSDF [38], NeRF [35] and
DMTET [55] to generate realistic 3D models solely from
textual descriptions. However, these methods have many
limitations. The generated objects or characters are often
rigid and lack of animation [7, 14, 30, 34, 44], they have
difficulty in producing high-quality realistic 3D avatars
in terms of geometry and texture [18], or the characters
are incompatible with traditional CG workflows (NeRF
based [5, 25, 40]).

Here we address these limitations with TADA, illustrated
in Fig. 13. Since our goal is animatable avatars that
are compatible with existing rendering engines, we build
upon the SMPL-X body model [39]. SMPL-X, however,
only represents a realistic, minimally clothed human body
shape. Our goal is to create diverse avatars with a wider
variety of body shapes and textures. Like recent work
that generates avatars from text, we use Score Distillation
Sampling (SDS) [40] but do so in several novel ways.
Specifically, we make three key contributions. (i) First,
we devise a hierarchical optimization of a hybrid mesh
representation which is based on a subdivided version
of SMPL-X [39] with additional learnable displacements
and a texture map. To produce high-quality details,
especially on the face region, we perform hierarchical
optimization over hierarchically rendered images with
different focal lengths, where the entire body, or only
specific parts, are visible. (ii) Second, existing text-to-3D
object methods [7, 40] suffer from inconsistent alignment
between the reconstructed geometry and texture (see
Fig. 2), as they evaluate the texture and geometry
individually. This makes animation of the resulting avatars
infeasible. (iii) Third, we want the generated character

(a) TEXTure (b) DreamHuman

(c) Ours

3D facial landmarks
(SMPL-X)

 2D facial landmark
(Mediapipe)

   Prompt:“ninja”

   Prompt:“ninja”

Geometry-Texture 
Alignment Detailed Avatar w/ Consistent geometry + texture

Figure 2. Compared with other existing methods [25, 40], our
method can generate high-quality 3D avatars with well-aligned
geometry and texture that is consistent with SMPL-X, enabling
animation and rendering with existing graphics pipelines.

to be semantically consistent with SMPL-X so that it can
be easily animated; that is, body parts and vertices on
output avatars correspond to the same body parts and
vertices on SMPL-X. To that end, we introduce animations
throughout the optimization process. Specifically, we
deform the generated character in each optimization step
by sampling predefined SMPL-X body poses and facial
expressions. This ensures that our generated characters can
be animated accurately and coherently, as depicted in Fig. 2
(c). Notably, once optimization is finished, our generated
characters can be animated with any novel set of SMPL-X
parameters. Especially, combined with existing text
to motion generation [53, 60] or text-to-audio-to-motion
methods [61, 72], we can animate the generated characters
to interact with the scenes or communicate with others.
This paves the way towards creating virtual 3D worlds with
animatable digital avatars fully from text.

In summary, with TADA we propose a user-friendly
tool for avatar creation and editing, that can be solely
controlled by the textual input and is fully compatible
with traditional graphics pipelines. The output model is
graphics-ready because the underlying model is SMPL-X
with displacements and a texture map. Our method can
generate realistic iconic celebrities, customized humans,
and cartoon characters. We validate our contributions with
ablation studies, show qualitative comparisons to the state
of the art, and conduct a user study that quantifies the
performance of our method on the task of high-quality 3D
avatar generation.

2. Related Work
Recently, there has been rapid progress on extending
text-to-2D-image generation methods [11, 23, 46] to
text-to-3D-content generation [33, 40, 65]. Here, we
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Figure 3. Overview. Initialized by a SMPL-X body T(β, θ, ψ) with skinning weights W , we subdivide the body to obtain a denser mesh
S(T) and add personalized displacements D to it. The personalized mesh T̂ is transformed into the posed space denoted as M̂ using
randomly sampled expressions and poses from an animation database. In each optimization step, the expressions and poses are changed
and M̂ is rendered under a novel view. Based on the rendered RGB I and normal image N, the geometry and texture of the mesh are
simultaneously optimized by a Score Distillation Sampling (SDS) loss.

discuss the most relevant text-to-3D-content generation
methods, while focusing primarily on text-to-3D-avatar
generation (both human and anime characters).
Text-to-3D-Content Generation. The successes of
Text-to-Image (T2I) generative modeling [9, 45, 47]
have sparked a surge of interest in the field of
text-to-3D generation [8, 50, 62, 69]. Despite progress,
effectively describing and controlling 3D properties of an
object using language, while ensuring coherence in the
three-dimensional space, remains a challenge. One line
of work [21, 34, 36] utilizes CLIP-space similarities to
guide shape and texture optimization. However, these
methods often fail to generate convincing and realistic 2D
renderings. CLIP-based optimization can be combined with
a generative appearance model to improve the quality, as
shown in CLIPFace [2]. However, this requires learning a
GAN-model for the 3D appearance, which is challenging
for full-body avatars that can vary from real humans to
cartoon characters.

To circumvent the training of a 3D generative model and
the problem of missing datasets, recent publications [7, 30,
40, 44] make significant strides by leveraging the power
of score distillation sampling (SDS) [45] derived from
2D text-to-image diffusion models to create content from
textual descriptions by optimizing a 3D representation.
TEXTure [44] takes a mesh as input and only optimizes
the texture map based on a given text prompt. In
contrast, DreamFusion [40] optimizes a Neural Radiance
Field (NeRF) [35] to represent the 3D content in terms
of a density and radiance field. It can generate 3D
models of arbitrary (fictional) objects. However, it
faces challenges due to slow optimization of NeRF and
low-resolution image space supervision, resulting in long
processing times and low-quality 3D models. To overcome
these limitations, Magic3D [30] introduces a two-stage
optimization framework, using NeRF in the first stage and a

textured mesh in the second stage. Fantasia3D [7] extends
this to generate 3D meshes by disentangling geometry
and texture, and optimizes them separately. All these
methods focus on general, static, object/scene generation;
they output is not animation-ready, which is necessary for
3D character creation.
Text-to-3D-Avatar Generation. Several methods generate
3D head avatars from text [13, 16, 64, 75, 76]. In contrast,
we focus on generating full-body characters including the
detailed face. AvatarCLIP [18] leverages NeuS [63] and
the SMPL-X model with a CLIP-guide loss to facilitate
the generation of avatars. Similarly, DreamAvatar [5]
utilizes the shape parameters from SMPL as a prior to learn
a NeRF-based color field. DreamHuman [25] leverages
imGHUM [1] as a prior, which represents a signed distance
field conditioned on pose and shape parameters, to learn a
NeRF of the human. However, the NeRF representation
remains problematic due to its relatively low geometry
and appearance quality, and it is not compatible with
traditional graphics workflows, especially for animation. In
the domain of explicit representations, Text2Mesh [34] and
Chupa [24] employ vertex displacement on a predefined
mesh template. Nonetheless, the inherent limitation of
fixed topology poses challenges in accurately generating
diverse character shapes. In contrast, our approach jointly
optimizes the shape, expression, and displacement. Thus,
the generated characters exhibit superior quality, can be
easily animated with SMPL-X motions, and seamlessly
integrate into existing CG rendering and animation
workflows.

3. Preliminaries

SMPL-X [39] is an animatable parametric 3D body model
that consists of the human body, hands and face. It hasN =
10, 475 vertices andK = 54 joints. Given the shape β, pose
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θ (including body joints pose θb, jaw pose θf and finger
pose θh) and expression ψ parameters, SMPL-X models the
human body as M(β, θ, ψ):

M(β, θ, ψ) = W(T(β, θ, ψ), J(β), θ,W )

T(β, θ, ψ) = T +Bs(β) +Be(ψ) +Bp(θ),
(1)

where T is a mean shape template, Bs, Be and Bp are
shape, expression and pose blend shapes, respectively. W is
the linear blend-skinning function transforming T(β, θ, ψ)
to the target pose θ, with the skeleton joints J(β) and
skinning weights W ∈ RN×K .
Score Distillation Sampling [40] has been proposed in
DreamFusion to utilize a pre-trained 2D diffusion model
to optimize the parameters η of a 3D model, given a text
y as input. Given the diffusion model ϕ with the noise
prediction network ϵ̂ϕ(xt; y, t), SDS optimizes parameters
η by directly minimizing the injected noise ϵ added to the
rendered images x = g(η) and the predicted noise:

∇ηLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵ̂ϕ(xt; y, t)− ϵ)

∂x

∂θ

]
, (2)

where g(η) denotes the differentiable rendering of the 3D
model parameterized by η, xt is the noised image, and w(t)
is a weighting function that depends on the noise level t.

4. Method
Given an input text prompt, TADA aims to generate a
high-fidelity animatable full-body avatar. As illustrated
in Fig. 3, our method initializes the 3D avatar with
upsampled SMPL-X, which is parameterized with shape,
pose, and expression parameters. Based on it, learnable
displacements are incorporated, resulting in a “clothed”
avatar with increased density (Sec. 4.1). Then, we optimize
the 3D character with consistent geometry and texture
using SDS losses that considers both the rendered normal
and RGB images in the latent space (Sec. 4.2). To
encourage semantic consistency with the SMPL-X, we
sample different gestures and expressions during training
(Sec. 4.3). This enables the future animation using the
SMPL-X pose and expression space.

4.1. SMPL-X+D Representation

TADA adopts an SMPL-X+D to model animatable clothed
avatars. The learnable displacement (D) accounts for
personalized details that are independent of pose, shape,
and expression. To generate a high-quality character with
a detailed face, we apply a partial mesh subdivision on the
original SMPL-X model, which is adapted as (Eq. (1)):

M̂(β, θ, ψ,D) = W(T̂(β, θ, ψ,D), J(β), θ, Ŵ )

T̂(β, θ, ψ,D) = S(T(β, θ, ψ)) +D,
(3)

where S : RN×3 → RNs×3 is the mesh subdivision
operation, D ∈ RNs×3, Ŵ ∈ RNs×J and Ns are
the vertex displacement, skinning weights and vertices
number of the subdivided body, respectively. Note that
besides the displacement D, the parameters β, θ, ψ are also
learnable. This helps to generate various kinds of characters
with various shapes, such as human-like characters and
anime characters with large deformed body shapes, like
exaggerated proportions, elongated limbs, large eyes, and
etc.

Partial Mesh Subdivision. The vertices on the surface of
the SMPL-X body are irregularly distributed, i.e., around
4,000 vertices are located on the head with the remaining
6,000 on the body. The sparsity of vertices on the body
surface results in less detailed deformations there. Simply
increasing the mesh density by subdividing the whole body
mesh leads to noisy results, especially, in the face area
during geometry optimization. To address this issue, we
employ an adaptive upsampling technique on the triangles
and interpolate their skinning weights within areas of
low mesh density, such as the body region and the back
of the head. This process yields a more refined mesh
with uniformly distributed vertices and smoother skinning
weights.

4.2. Consistent Geometry and Texture Learning

To generate animatable characters, we need to ensure the
consistency between geometry and the texture. Therefore,
we propose to blend the SDS loss of the rendered normal
and RGB images to achieve a well-aligned geometry and
texture. Given a mesh M̂ parameterized by D, β and ψ and
albedo Ψ, we render its normal image N and colored image
I using a differentiable render [26], denoted as R:

N = R(M̂, π), I = R(Ψ, M̂, π) (4)

where π are the camera parameters. In each iteration, the
camera is randomly positioned in one of two perspectives:
a full-body view or a zoom-in head view. The head zoom-in
allows us to reconstruct a detailed face region.
Texture SDS Objective. Given a text prompt, the texture
generation is guided by a pretrained Stable Diffusion (SD)
model [45], denoted as ϕ, which measures the similarity
between the rendered image and the provided text prompt
within the added and predicted noise space:

∇ΨLtex(ϕ, I) = Et,ϵ
[
w(t)(ϵ̂ϕ(z

I
t ; y, t)− ϵ)

∂I
∂Ψ

∂zI

∂I

]
,

(5)
where zI is the latent feature of I, encoded by image
encoder (SD), ϵ̂ϕ(zIt ; y, t) is the predicted noise given text
embedding y and noise level t, ϵ is the pre-computed noise.
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Text→Full-body Motion (priorMDM)
“A person makes a long leap forward” 

Text→Audio          →Expressive Motion (TTS+TalkSHOW)
“...that everyone can do, to combat the kidney shortage...”

Figure 4. TADA enables holistic animation over the face, body and hands. We show animation examples of the avatars “Lionel Messi” and
“Mabel Pines in Gravity Falls” using expressions and body poses from TalkSHOW [72] (with TTS [61]) and priorMDM [53], respectively.

Geometry Consistency SDS Objective. Similarly,
rendered normal images can be used for the diffusion model
as shape encoding to facilitate the geometry synthesis.
However, this approach may encounter challenges in
ensuring perfect consistency between geometry and texture.
To address this issue, we compute the SDS loss on the
interpolation between normal and color image latents.

∇γLc(ϕ, x) = Et,ϵ
[
w(t)(ϵ̂ϕ(z̃t; y, t)− ϵ)

∂N
∂γ

∂z

∂N

]
,

(6)
where γ = {β, ψ,D} are the geometry related parameters,
z̃ = αzI + (1 − α)zN denotes the resulting interpolated
latent code, while zI and zN represent the latent codes
corresponding to the RGB and normal image, respectively.
Overall Optimization Objective. The learning objectives
can be formulated as a combination of the texture SDS
objective Ltex and the geometry consistency loss Lc, where
λtex and λc are the corresponding loss weights:

L = λtexLtex + λcLc, (7)

Based on Eq. (7), the geometry and texture are optimized
jointly. We employ a progressive optimization strategy
for the rendered color image I in the Eq. (5). Initially,
this image is generated at a low resolution (32 × 32),
which gradually increases during the optimization process,
ultimately reaching 512 × 512 resolution. In contrast, both
the rendered normal image N and color image I in the
Eq. (6) remain 512 × 512 resolution throughout the entire
procedure. Additionally, we detach the gradients of zI in
Eq. (6), allowing only geometric updates, while optimizing
textures using the texture SDS loss. This approach
ensures both texture-text consistency and geometry-texture
alignment, preventing misalignment that could result in
unrealistic animation.

4.3. Training with Animations

To ensure plausible animations, particularly for the face
region, it is essential to maintain semantic correspondence
with the SMPL-X model. However, during optimization,
certain parts may undergo changes and not align perfectly

with the original ones (e.g. the mouth may be mapped
to the chin area or become distorted). If not addressed,
animated results will have severe artifacts as the wrong parts
will be deformed with the SMPL-X model. To tackle this
problem, we optimize the avatar using various animations
(see Fig. 3). In particular, we find that using different jaw
poses during training helps produce well aligned faces. We
found that animating the SMPL-X expression parameters,
made little visible difference. We suspect that these would
become relevant with an even higher-resolution face mesh.
Specifically, during optimization, we randomly sample one
jaw pose in each iteration from an expression gallery Θ,
i.e., a motion sequence from TalkSHOW [72]. The final
optimization process minimizes the following objective:

min
β,ψ,D,Ψ

Eθ∈Θ [L(ϕ, x(β, θ, ψ,D,Ψ))] . (8)

5. Experiments

We first demonstrate our expressive, holistic, animation of
the avatars, then evaluate their quality, and the consistency
between texture and geometry. Finally, ablation studies are
conducted to analyze the effectiveness of each component.

5.1. Expressive Holistic Body Animation

One crucial feature that distinguishes our method from
others is that TADA enables natural full-body animations
over the face, body and hands. Figure 4 illustrates the
animation of characters generated by TADA using only with
text as input. In the first case, we convert text to audio [61]
and then use TalkSHOW [72] create expressive SMPL-X
animations of the upper body, face and hands. In the second
case we use priorMDM [53] to convert text into SMPL [31]
animations, which we convert to SMPL-X [39]. Thanks
semantic correspondence with SMPL-X, the characters are
easily animated with natural movements of the fully body
and face. This consistency with SMPL-X means that avatars
generated by TADA can be animated using any of the recent
text to animation methods that output SMPL-X.
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“Naruto Uzumaki” “Stephen Hawking” “an elderly man 
wearing a beige suit”

“Homer Simpson” “Vincent van Gogh”
“A businesswoman 
wearing a tailored sheath 
dress with a statement 
necklace and high heels”

Figure 5. Diverse Range of Avatar Generation. TADA has the ability to generate a broad spectrum of characters, which includes iconic
figures, celebrities, and customized avatars based on textual descriptions.

      TEXTure                 AvatarCLIP                  DreamAvatar   Fantasia3D                      Ours 

Figure 6. Qualitative comparison. The prompts (top → down) are “Stormtrooper”, “Woody in Toy Story”, “Kristoff in Frozen”.
Compared with baselines using: A) body mesh w/o displacement clothing layer (TEXTure [44], AvatarCLIP [18]), B) Neural fields
(DreamAvatar [5]), C) DMTET (Fantasia3D [7]). TADA generates more high-quality characters in terms of both geometry and texture.

5.2. Diverse Range of Avatars

As shown in Fig. 5, TADA produces a wide variety of
3D avatars characterized by their high-quality geometry
and realistic textures. These avatars contain fictional

characters from animated films, real-life celebrities, and
custom-made characters based on prompts generated by
ChatGPT. This capability opens up numerous real-world
applications, enabling users to effortlessly generate avatars
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Figure 7. Comparison of head generator. While DreamFace
excels in generating CG-compatible facial assets, it struggles
with shapes that deviate significantly from the norm, such as
accessories like hats. HeadSculpt often produces noisy artifacts in
its output. In contrast, TADA generates a broader range of detailed
shapes and appearances with greater fidelity.

Preference (%, ↑) AvatarCLIP DreamAvatar
Geometry Quality 94.45 87.77
Texture Quality 94.74 82.67

Consistency with Input Prompt 95.00 81.52

Table 1. User Study. User preference results indicates that TADA
significantly outperforms other baselines in terms of geometry,
texture, and consistency with the input prompt. Its superior
performance is evident across all three key aspects.

with a wide range of shapes, appearances, and clothing
styles.

5.3. Qualitative Comparison

We compare our method with existing approaches on
the task of text-to-3D human avatar generation. We
consider four state-of-the-art methods for full body avatar
generation, where the original implementation is available:
TEXTure [44], AvatarCLIP [18], DreamAvatar [5] and
Fantasia3D [7]. For head-only avatar generation,
we compare our approach with DreamFace [75] and
HeadSculpt [16].

Full Body Avatar. Figure 6 provides a qualitative
comparison of avatars generated by [5, 18, 44] and by
TADA. In comparison to the baselines, TADA generates
avatars with considerably more realistic textures. Also
TADA produces a wide range of 3D body shapes
(cf. TEXTure), without geometric artifacts (cf. AvatarCLIP,
DreamAvatar and Fantasia3D), and with a semantically
correct texture that is consistent with the geometry.

Head Avatar. Furthermore, TADA generates high-quality
head avatars as shown in Fig. 7. We compare with
DreamFace [75] and HeadSculpt [16], a shape sculpting
method specifically designed for head avatar generation.
Note that TADA creates visually appealing head avatars
with consistent and well-aligned geometry as well as
high-fidelity textures. However, others have different
limitations. DreamFace [75] avatars can look realistic but
are strongly biased towards natural head shapes and cannot
capture more varied facial details like mustaches or cartoon
shapes. Like our results, the head avatars can be animated.

w/o geometry consistency loss w/ geometry consistency loss

   training w/o animation             training w/ animation

Figure 8. Ablation study on 1) geometry consistency loss,
and 2) training with animation. The geometry consistency loss
generates better well-aligned geometry and texture, while training
with animation helps remain the semantic correspondences with
the original SMPL-X, especially at the mouth region.

Meanwhile, HeadScuplt [16] generates noisy geometry and
texture, making the output less useful for downstream tasks
like animation.

5.4. Quantitative Evaluation.

To quantitatively evaluate TADA, we conducted a A/B user
study with 17 CV students.We used a Google Survey Form
to assess the (1) geometry quality, (2) texture quality, and
(3) consistency with input prompts. We used ChatGPT to
automatically generate a large set of character descriptions,
including celebrities, characters in movies and anime, and
general occupation character descriptions, select 27 of
these at random, and generate the corresponding avatars;
see Sup. Mat. for details. In A/B tests, the participants
were asked to select the preferred reconstruction from
randomly selected videos from the baselines (AvatarCLIP
and DreamAvatar) and our method (see Tab. 1). The results
show that our proposed method achieves considerable
higher preference over the baseline methods over all three
metrics.

5.5. Ablation Study

We conducted ablation studies to evaluate the effects
of the geometry consistency loss and the optimization
with animations in our method. The results shown in
Fig. 8 demonstrate the effectiveness of these components.
The consistency loss improves the alignment between the
geometry and texture on the backside of the “Superman”,
while training with animations improves the face geometry
by enforcing the semantic correspondence with SMPL-X,
particularly at mouth region. These advancements enable
us to effortlessly animate our high-resolution avatars,
leveraging the pose and expression space of the SMPL-X
model.
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Abraham Lincoln Donald Trump Barack Obama Mark Zuckerberg Bruce Lee

Figure 9. Virtual Try-on. We demonstrate five individuals: Abraham Lincoln, Donald Trump, Barack Obama, Mark Zuckerberg, and
Bruce Li, each with two different outfits. The first one represents their typical dressing style, personalized according to their known
preferences with their name as the only input. The other one is imagined by ChatGPT, complete with detailed descriptions of the attire.

6. Editing Applications

TADA facilitates several applications, such as virtual try-on,
text-guided texture editing, and local geometry transferring.

Deadpool 
wearing a 
purple 
and black 

leather suit.

Spiderman 
wearing a 
black suit 

with red 
webbing.

Figure 10. Text-guided texture editing. TADA possesses the
ability to modify the color of clothing via changing texts.

Virtual Try-on. TADA can be used for virtual try-on,
i.e., we can ask ChatGPT [6] to design fashion outfits
for a specific person as depicted in Fig. 9. The visual
results indicate that our method can generate avatars
with text-guided personalized textures while preserving the
identity.

Texture Editing. Figure 10 shows examples of modifying
outfit textures by changing the input text. This is
particularly valuable for film or game character design,
allowing easy alterations such as changing the color palette
of a character. Designers can quickly visualize their desired
aesthetic appeal and bring their creative vision to life.

Local Shape Editing. Thanks to the body-part segments
of SMPL-X, our method supports direct local body and face
swapping between two avatars without any additional effort.
Fig. 11 gives an example of face editing on four individuals.
This is also applicable to body or clothing transferring. In
addition to geometry or texture transferring, TADA can also
be utilized for local shape sculpting through user-friendly
prompts as input. This feature is particularly helpful for
artists in designing customized avatars.

Edit           

Origin

               Face                    Cheek & Chin                   Nose                         Ears

  Donald Trump          Abraham Lincoln             Barack Obama                  Bill Gates

Figure 11. Local Shape Editing. We demonstrate an example of
face swapping across four different celebrities.

7. Discussion
While TADA shows promising results, it still has several
limitations. Additionally, further investigation is needed to
assess any potential negative social impact.

Limitations & Future works. One aspect that requires
improvement is the relighting capabilities in different
environments, e.g. generated indoor rooms from
MIME [71], thus enabling photo-realistic rendering with
human-scene interactions. This can benefit from using
BRDF, by separating the texture into separate components
(i.e., material, albedo, and lighting) like Fantasia3D [7].
Furthermore, TADA can generate avatars with diverse body
shapes, some of which may deviate largely from the base
SMPL-X model. In such cases, using the original skinning
weights may lead to unrealistic animations. Therefore,
exploring the joint learning of adaptable skinning weights
specifically tailored to text input could be a promising
direction. Textual descriptions alone may not fully
capture the nuanced and intricate aspects of a character’s
appearance. Combining existing controllable text-to-image
models [37, 41, 74] can be beneficial to provide more
detailed control over a character’s face or clothing. And
the compositional generation of separate haircut [56],
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accessories [12], and decoupled outfits [10] could also be
a valuable exploration direction.

Social Impact. As the technique progresses, it raises
concerns about deep-fake and intellectual property (IP)
when we generate iconic characters. Regulations should
be established to address these issues alongside the benefits
in the entertainment industry. Additionally, it is crucial
to prioritize gender and cultural diversity. For instance,
if the term “police officer” consistently generates a male
instead of considering both genders, it implies potential
gender bias. Ensuring inclusivity and avoiding stereotypes
are essential in mitigating any adverse social impact.

8. Conclusion

We introduce TADA, a simple yet effective method
for generating high-quality and animatable 3D textured
avatars solely from text input. These avatars cover
a wide range of individuals, including celebrities and
customized characters. They seamlessly integrate into
existing CG pipelines, catering to various industries
like fashion and entertainment. The key contributions
include: 1) utilizing a subdivided version of SMPL-X with
learned displacement layer and UV texture, 2) employing
hierarchical optimization with adaptive focal lengths, 3)
enforcing geometry-texture alignment through geometric
consistency loss, and 4) training with animation to keep
semantic correspondence with SMPL-X. We validate these
components through ablation studies and demonstrate
the superiority of TADA over other SOTAs with both
qualitative and quantitative results.
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Appendices
A. Additional Qualitative Comparisons
We provide additional qualitative comparisons with existing
baselines in three categories: head avatar generation,
full-body iconic and customized avatar generation.
Head Avatar Generation. In Fig. 12, we provide examples
generated by HeadSculpt [16] and our method TADA.
Unlike HeadSculpt often generates noisy geometry and
suffers from inconsistency between texture and geometry,
TADA could produce high-quality character geometries
with well-aligned textures.
Full-body Iconic Avatar Generation. We conduct a
comprehensive comparison of the full-body iconic avatar
generation with existing methods [5, 18, 19, 40, 73] in
Figs. 13 to 15. NeRF-based methods [5, 19, 40, 73]
tends to generate low-quality geometric fields, which are
not compatible with existing traditional CG workflows,
such as rasterization and animation. The mesh-based
method AvatarClip [18] tends to generate minimal clothed
geometry, and low-quality texture with severe artifacts (see
Fig. 15). In contrast, TADA has the capability to produce
a wide range of characters with superior geometries and
well-aligned textures. These outputs seamlessly integrate
with conventional graphics workflows, making them readily
suitable for animation and rendering.
Full-body Customized Avatars Generation. To explore
the generalization of our method, we compare TADA with
DreamHuman [25] on the task of full-body customized
avatars generation. In Fig. 16, we can see that TADA
generates high-quality characters with more consistent
geometry and texture than DreamHuman.

B. Implementation details
We select camera positions (r, θ, ϕ) in a spherical
coordinate system, where r, θ, and ϕ denote the radius,
elevation, and azimuth angle, respectively. During the
optimization, the virtual cameras are positioned as: 1)
full-body mode: camera with full-body field of view
(FOV), and 2) head-mode: zoom-in camera focusing the
head. The head-mode camera is sampled with a probability
of 30%, and full-body model with 70%. We sample θb
values within the range of [60◦, 90◦] under full-body mode.
Conversely, for the head view θh, we opt for values from the
range of [75◦, 85◦]. Additionally, we sample ϕ within the
intervals of [−180◦, 180◦] for the full body, and [−30◦, 30◦]
for the head. In each iteration, the camera radius is adjusted
according to the body height and the head size.

  HeadSculpt              TADAHeadSculpt [16] TADA (Ours)

Figure 12. Qualitative comparison of our method TADA with
HeadSculpt [16] on the task of head avatar generation.
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AvatarVerseDreamWaltzDreamAvatarDreamFusion TADADreamFusion [40] DreamAvatar [5] DreamWaltz [19] AvatarVerse [73] TADA (Ours)

Figure 13. Qualitative comparison on full-body avatar generation of icons. The prompts (top → down) are “Spiderman”, “Joker”,
“Stormtrooper”. Compared with the baselines [5, 19, 40, 73], TADA generates a higher quality in terms of both geometry and texture.
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                           AvatarVerse                                                                                        TADAAvatarVerse [73] TADA (Ours)

Figure 14. Qualitative comparison of the full-body iconic avatar generation with AvatarVerse [73]. Left is from AvatarVerse. Right
is ours. The generated avatars from AvatarVerse lack high-quality details in geometry, especially on the face region. In contrast, TADA
generates high-quality meshes with well-aligned textures.
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          AvatarClip     DreamAvatar                   TADAAvatarCLIP [18] DreamAvatar [5] TADA (Ours)

Figure 15. Qualitative comparison against DreamAvatar [5] and AvatarClip [18] on the full-body iconic avatar generation.
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                        DreamHuman                                                                 TADADreamHuman [25] TADA (Ours)

Figure 16. Qualitative comparison with DreamHuman [25] on the full-body customized avatar generation.
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C. Prompts used by ChatGPT
We generate characters of three groups: celebrity,
characters in movies & anime (fictional characters), and
general job descriptions. We also provide the prompts used
to imagine outfits for Virtual Try-on application. In the
following, we list the prompts used for generation.

Celebrities. We ask ChatGPT to output the names of
superstars, scientists, businessmen and presidents. Here are
the corresponding generated prompts:
Donald Trump
Abraham Lincoln
Barack Obama
Hilary Clinton
Yao Ming
Kobe Bryant
Messi
Bruce Lee
Steven Paul Jobs
Mark Elliot Zuckerberg
Joe Biden
Bill Gates
Warren Buffett
Elon Musk
Jeff Bezos
Jack Ma
Albert Einstein
Marie Curie
Stephen Hawking
Vincent van Gogh
Michelangelo
Wolfgang Amadeus Mozart
Ludwig van Beethoven
Michael Jackson
Kim Kardashian

Fictional Characters. We collect superheroes, Disney
princesses, and characters in films such as Forzen, Aladdin,
South Park, Simpson, Rick and Morty, etc.
superman
Deadpool
Batman
Ant-man
spiderman
Iron Man
Captain America
Woody in Toy Story
Buzz Lightyear in Toy Story
Elsa in Frozen
Anna in Frozen
Kristoff in Frozen
Aladdin in Aladdin
Jasmine in Aladdin
Mulan in Mulan
Olaf in Frozen
Jessie in Toy Story
Sun Wukong
groot
Moana in Moana
Judy Hopps in Zootopia
Goku in Dragon Ball series
Naruto Uzumaki in Naruto series
Luffy in One Piece
Kiki in Kiki’s Delivery Service
San in Princess Mononoke
Eric Cartman in South Park: Bigger, Longer & Uncut
Dipper Pines in Gravity Falls
Mabel Pines in Gravity Falls
Rick Sanchez in Rick and Morty
Morty Smith in Rick and Morty
Stan Marsh in South Park: Bigger, Longer & Uncut
Grunkle Stan in Gravity Falls
Soos Ramirez in Gravity Falls
Kyle Broflovski in South Park: Bigger, Longer & Uncut
Kenny McCormick in South Park: Bigger, Longer & Uncut
Bojack Horseman in Bojack Horseman
Diane Nguyen in Bojack Horseman
Ariel in The Little Mermaid
Belle in Beauty and the Beast
Homer Simpson in The Simpsons
Marge Simpson in The Simpsons
Bart Simpson in The Simpsons
Lisa Simpson in The Simpsons
astronaut
Michelangelo style statue of an astronaut
A highly detailed stone bust of Theodoros Kolokotronis
Captain Jack Sparrow from Pirates of the Caribbean
Mobile suit Gundam
Harry Potter, adult
Optimus Prime, transformer
Ronald Weasley, adult
stormtrooper
Casino Dealer

Ancient Prince of India
Nick Fury
Captain Marvel
robot
Thor
Doctor Strange
Snow White
Cinderella
Crayon Shin-chan
Misae Nohara

General Job Descriptions. In addition, we ask GPT to
generate general job descriptions such as policeman, doctor,
chef and etc.
gardener
warrior
knight
witch
wizard
Joker
Clown
Chef
Nurse
Dentist
Doctor
Artist
Carpenter
Farmer
Athlete
Pilot
Firefighter
Police officer
astronaut

Imagined Outfits for Virtual Try-on. Here is an
example, how we use ChatGPT to generate different outfit
descriptions for Barack Obama.
We: please generate 50 prompts describing Obama wearing different clothes

----------------------------------------------------------------

ChatGPT:
Sure, here are 50 writing prompts that describe Barack Obama
wearing different clothes:

Barack Obama wearing a sharp navy blue suit and a red tie.
Barack Obama wearing a casual grey t-shirt and jeans.
Barack Obama wearing a black leather jacket and aviator sunglasses.
Barack Obama wearing a traditional African dashiki.
Barack Obama wearing a classic American baseball cap and polo shirt.
Barack Obama wearing a white dress shirt and black dress pants.
Barack Obama wearing a bright yellow raincoat and rain boots.
Barack Obama wearing a navy blue hoodie and sneakers.
Barack Obama wearing a tan safari jacket and khaki pants.
Barack Obama wearing a red and black plaid flannel shirt and jeans.
Barack Obama wearing a crisp white dress shirt and a black suit.
Barack Obama wearing a light blue chambray shirt and khaki shorts.
Barack Obama wearing a navy blue blazer and chinos.
Barack Obama wearing a black and white houndstooth suit and tie.
Barack Obama wearing a green military-style jacket and combat boots.
Barack Obama wearing a purple dress shirt and grey suit.
Barack Obama wearing a denim shirt and khaki pants.
Barack Obama wearing a pink dress shirt and navy blue suit.
Barack Obama wearing a brown leather jacket and brown boots.
Barack Obama wearing a yellow polo shirt and white shorts.
Barack Obama wearing a grey sweatshirt and athletic pants.
Barack Obama wearing a black leather bomber jacket and jeans.
Barack Obama wearing a white t-shirt and denim jacket.
Barack Obama wearing a burgundy sweater and dress pants.
Barack Obama wearing a black and white checkered suit and tie.
Barack Obama wearing a green army jacket and cargo pants.
Barack Obama wearing a navy blue blazer and grey dress pants.
Barack Obama wearing a grey hoodie and black sweatpants.
Barack Obama wearing a yellow rain jacket and rain boots.
Barack Obama wearing a light blue dress shirt and navy blue suit.
Barack Obama wearing a black turtleneck and khaki pants.
Barack Obama wearing a red plaid shirt and jeans.
Barack Obama wearing a grey suit and a red tie.
Barack Obama wearing a white polo shirt and black shorts.
Barack Obama wearing a blue suit and a white dress shirt.
Barack Obama wearing a black t-shirt and black jeans.
Barack Obama wearing a purple dress shirt and black suit.
Barack Obama wearing a brown leather jacket and jeans.
Barack Obama wearing a white t-shirt and cargo pants.
Barack Obama wearing a grey suit and a blue tie.
Barack Obama wearing a black hoodie and black sweatpants.
Barack Obama wearing a green sweater and khaki pants.
Barack Obama wearing a navy blue suit and a white dress shirt.
Barack Obama wearing a red polo shirt and khaki shorts.
Barack Obama wearing a brown leather bomber jacket and jeans.
Barack Obama wearing a white dress shirt and black suit pants.
Barack Obama wearing a green camouflage jacket and cargo pants.
Barack Obama wearing a grey sweater and black dress pants.
Barack Obama wearing a blue plaid shirt and jeans.
Barack Obama wearing a black suit and a light blue dress shirt.
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